On shape recognition In honour of Pi Day

Sergii Myroshnychenko

University of Alberta
Pacific Institute for the Mathematical Sciences
$\pi .2021$

Content

In the next 28 min ., we are going to:
(1) Look at colourful pictures.
(2) See the origins and motivations for problems.
(3) Solve 2 real-research problems: easy and not easy.
(4) Stare at shapes to recognize them.
(5) Homework: two open problems.

What do these shapes have in common?

Mars

What do these shapes have in common?

The Great Pyramid, 2570 B.C.

What do these shapes have in common?

A yummy grape.

What do these shapes have in common?

The British $£ 1$ coin (until 2017).

What do these shapes have in common?

The mineral pyrite, also known as "fool's gold".

What do these shapes have in common?

What do these shapes have in common?

Honeycomb.

What do these shapes have in common?

Batteries.

What do these shapes have in common?

A tipi (also tepee or teepee).

What do these shapes have in common?

Orange slices.

What do these shapes have in common?

Bridge components.

What do these shapes have in common?

A football.

What do these shapes have in common?

An egg.

Convexity

Shape K is called convex if for any two points $x, y \in K$, the segment [xy] connecting them lies in K entirely.

Figure: Convex shape K and non-convex shape L.

Every two points can see each other

Figure: Convex shape K and non-convex shape L.

What does Convex Geometry study?

Convex Geometry is a branch of mathematics that studies compact convex shapes in Euclidean space which are called convex bodies.

What does Convex Geometry study?

Convex Geometry is a branch of mathematics that studies compact convex shapes in Euclidean space which are called convex bodies.

Figure: Examples: a polyhedron, a Euclidean ball, and who-knows-what.

How did it start?

Results and hints to problems which are of interest even today date back to antiquity 300-200 B.C.

Archimedes, Euclid and Zenodorus.

How did it start?

Results and hints to problems which are of interest even today date back to antiquity 300-200 B.C.

Archimedes, Euclid and Zenodorus.

For example:

How did it start?

Results and hints to problems which are of interest even today date back to antiquity 300-200 B.C.

Archimedes, Euclid and Zenodorus.

For example:

- Platonic solids (regular, convex polyhedron).

How did it start?

Results and hints to problems which are of interest even today date back to antiquity 300-200 B.C.

Archimedes, Euclid and Zenodorus.

For example:

- Platonic solids (regular, convex polyhedron).
- Isoperimetric problem (relation of surface area and volume).

How did it start?

Results and hints to problems which are of interest even today date back to antiquity 300-200 B.C.

Archimedes, Euclid and Zenodorus.

For example:

- Platonic solids (regular, convex polyhedron).
- Isoperimetric problem (relation of surface area and volume).
- Rigidity of polytopal surfaces (can we wiggle shapes?)

How did it start?

Results and hints to problems which are of interest even today date back to antiquity 300-200 B.C.

Archimedes, Euclid and Zenodorus.

For example:

- Platonic solids (regular, convex polyhedron).
- Isoperimetric problem (relation of surface area and volume).
- Rigidity of polytopal surfaces (can we wiggle shapes?)
- Problem of the volumes of pyramids (of all kinds).

How did it start?

Results and hints to problems which are of interest even today date back to antiquity 300-200 B.C.

Archimedes, Euclid and Zenodorus.

For example:

- Platonic solids (regular, convex polyhedron).
- Isoperimetric problem (relation of surface area and volume).
- Rigidity of polytopal surfaces (can we wiggle shapes?)
- Problem of the volumes of pyramids (of all kinds).
- etc.

Current questions

Convex geometry often deals with tasks that are closely related to

Current questions

Convex geometry often deals with tasks that are closely related to

- Generalizations to higher dimensions (probability, statistics, data analysis)

Current questions

Convex geometry often deals with tasks that are closely related to

- Generalizations to higher dimensions (probability, statistics, data analysis)
- Curvature properties of boundary surfaces (differential geometry, physics, differential equations)

Current questions

Convex geometry often deals with tasks that are closely related to

- Generalizations to higher dimensions (probability, statistics, data analysis)
- Curvature properties of boundary surfaces (differential geometry, physics, differential equations)
- Best and random approximations (computer graphics)

Current questions

Convex geometry often deals with tasks that are closely related to

- Generalizations to higher dimensions (probability, statistics, data analysis)
- Curvature properties of boundary surfaces (differential geometry, physics, differential equations)
- Best and random approximations (computer graphics)
- Combinatorial and algebraic polytope theory (encryption, number theory)

Current questions

Convex geometry often deals with tasks that are closely related to

- Generalizations to higher dimensions (probability, statistics, data analysis)
- Curvature properties of boundary surfaces (differential geometry, physics, differential equations)
- Best and random approximations (computer graphics)
- Combinatorial and algebraic polytope theory (encryption, number theory)
- Algorithmic and complexity problems (computer science)

Current questions

Convex geometry often deals with tasks that are closely related to

- Generalizations to higher dimensions (probability, statistics, data analysis)
- Curvature properties of boundary surfaces (differential geometry, physics, differential equations)
- Best and random approximations (computer graphics)
- Combinatorial and algebraic polytope theory (encryption, number theory)
- Algorithmic and complexity problems (computer science)
- Questions on min/max (theory of optimizations)

Current questions

Convex geometry often deals with tasks that are closely related to

- Generalizations to higher dimensions (probability, statistics, data analysis)
- Curvature properties of boundary surfaces (differential geometry, physics, differential equations)
- Best and random approximations (computer graphics)
- Combinatorial and algebraic polytope theory (encryption, number theory)
- Algorithmic and complexity problems (computer science)
- Questions on min/max (theory of optimizations)
- Unique determination
(reconstruction of data, stability of shapes)

Question: uniqueness of rectangles

Do two values of the area A and the perimeter P determine a rectangle uniquely?

Question: uniqueness of rectangles

Do two values of the area A and the perimeter P determine a rectangle uniquely?

Figure: The same rectangle.

Question: uniqueness of rectangles

Can there be two different rectangles with the same area A and perimeter P ?

Question: uniqueness of rectangles

Can there be two different rectangles with the same area A and perimeter P ?

Figure: Different rectangles.

Area and perimeter

Let there be two different rectangles with the same A and P.

$$
a b=A=c d, \quad 2(a+b)=P=2(c+d)
$$

Area and perimeter

Let there be two different rectangles with the same A and P.

$$
a b=A=c d, \quad 2(a+b)=P=2(c+d) .
$$

Then consider the quadratic polynomial

$$
x^{2}-\frac{P}{2} x+A
$$

Area and perimeter

Let there be two different rectangles with the same A and P.

$$
a b=A=c d, \quad 2(a+b)=P=2(c+d) .
$$

Then consider the quadratic polynomial

$$
x^{2}-\frac{P}{2} x+A
$$

We can factor

$$
(x-c)(x-d)=x^{2}-\frac{P}{2} x+A=(x-a)(x-b) .
$$

Area and perimeter

Let there be two different rectangles with the same A and P.

$$
a b=A=c d, \quad 2(a+b)=P=2(c+d) .
$$

Then consider the quadratic polynomial

$$
x^{2}-\frac{P}{2} x+A
$$

We can factor

$$
(x-c)(x-d)=x^{2}-\frac{P}{2} x+A=(x-a)(x-b)
$$

This yields that $a=d, b=c$ or $a=c, b=d$.
So the rectangles must be the same.

Question: uniqueness of ellipses

Do the values of the area and the circumference determine an ellipse uniquely?

Figure: The same ellipse.

Question: uniqueness of ellipses

Can there be two different ellipses with the same area and circumference?

Figure: Different ellipses.

Who is an ellipse really?

$$
\mathcal{E}=\left\{(x, y) \in \mathbb{R}^{2}: \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\} .
$$

Area and circumference

Let \mathcal{E} be an ellipse of fixed area A and circumference P.

Area and circumference

Let \mathcal{E} be an ellipse of fixed area A and circumference P.

$$
\left\{\begin{array}{l}
A=\pi a b \\
P=\int_{0}^{2 \pi} \sqrt{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t} d t
\end{array}\right.
$$

Area and circumference

Let \mathcal{E} be an ellipse of fixed area A and circumference P.

$$
\left\{\begin{array}{l}
A=\pi a b \\
P=\int_{0}^{2 \pi} \sqrt{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t} d t
\end{array}\right.
$$

Then $b=\frac{A}{\pi a}$, and $P(a)=\int_{0}^{2 \pi} \sqrt{a^{2} \cos ^{2} t+\left(\frac{A}{\pi a}\right)^{2} \sin ^{2} t} d t$.

Area and circumference

Let \mathcal{E} be an ellipse of fixed area A and circumference P.

$$
\left\{\begin{array}{l}
A=\pi a b \\
P=\int_{0}^{2 \pi} \sqrt{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t} d t
\end{array}\right.
$$

Then $b=\frac{A}{\pi a}$, and $P(a)=\int_{0}^{2 \pi} \sqrt{a^{2} \cos ^{2} t+\left(\frac{A}{\pi a}\right)^{2} \sin ^{2} t} d t$.

Equation $P(a)=$ const has only two solutions that correspond to the same ellipse with semi-axis a, b or b, a.

3D-printing

Airport X-ray

Computed Tomography Scan

CT Imaging Overview

Anatomy of a CT scan

CT scanners give doctors a 3-D view of the body. The images are exquisitely detailed but require a dose of radiation that can be 100 times that of a standard X-ray.

Projections and sections

sections

ortogonal projections

Sight recognition

Who is a Euclidean ball?

A see-through planet: is K a ball?

Yes (Matsuura 1961).

Who are ellipsoids?

$$
\mathcal{E}=\left\{(x, y, z) \in \mathbb{R}^{3}: \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1\right\} .
$$

A see-through planet: is K an ellipsoid?

Yes (Bianchi, Gruber 1987).

Who are convex polyhedra?

The word polyhedron comes from the Classical Greek, as poly- ("many") + -hedron ("base" or "seat").

A see-through planet: is K a polyhedron?

Yes (M. 2020).

Homework: Problem 1

Let K be a convex body in the unit disk, and define β_{K} to be the visual angle of K at P. This yields a function $y=\beta_{K}(t)$ on $[0,2 \pi]$.

Homework: Problem 1

Let K be a convex body in the unit disk, and define β_{K} to be the visual angle of K at P. This yields a function $y=\beta_{K}(t)$ on $[0,2 \pi]$.

Q: Can there be another shape L with the same visual angles at every point P as $K\left(\beta_{K}(t) \neq\right.$ const $)$?

Homework: Problem 2

The diameter of a shape is the largest distance between any of its two points.

Figure: 15-gons of maximum perimeter with a unit diameter.

Homework: Problem 2

The diameter of a shape is the largest distance between any of its two points.

Figure: 15-gons of maximum perimeter with a unit diameter.

Q: What is the maximum perimeter of a convex 2^{n}-gon of unit diameter $(n \geq 3)$?

Thank You

Happy Pi Day

