
RESEARCH STATEMENT

SERGII MYROSHNYCHENKO

Contents

1. Introduction 1
2. Nakajima-Süss conjecture and its functional generalization 2
3. Visual recognition of convex bodies 4
4. Intrinsic volumes of ellipsoids and the moment problem 6
5. Questions of geometric inequalities 7
6. Analytic permutation testing 9
7. Current work and future plans 10
References 12

1. Introduction

My research interests lie mainly in Convex and Discrete Geometry with applications of Probability
Theory and Harmonic Analysis to these areas. Convex geometry is a branch of mathematics that works
with compact convex sets of non-empty interior in Euclidean spaces called convex bodies. The simple
notion of convexity provides a very rich structure for the bodies that can lead to surprisingly simple
and elegant results (for instance, [Ba]). A lot of progress in this area has been made by many leading
mathematicians, and the outgoing work keeps providing fruitful and extremely interesting new results,
problems, and applications. Moreover, convex geometry often deals with tasks that are closely related to
data analysis, theory of optimizations, and computer science (some of which are mentioned below, also
see [V]).

In particular, I have been interested in the questions of Geometric Tomography ([Ga]), which is the
area of mathematics dealing with different ways of retrieval of information about geometric objects from
data about their different types of projections, sections, or both. Many long-standing problems related to
this topic are quite intuitive and easy to formulate, however, the answers in many cases remain unknown.
Also, this field of study is of particular interest, since it has many curious applications that include X-ray
procedures, computer vision, scanning tasks, 3D printing, Cryo-EM imaging processes etc.

I have also been fascinated by the broad field of geometric inequalities. This area is as old as geometry
itself, the first results of which go back to Euclid’s The Elements. Nevertheless, even nowadays it remains
the center of a long list of many interesting mathematical topics. Several famous results (for instance, see
[S]) include isoperimetric inequality, Brunn-Minkowski theorem, Blaschke-Santaló inequality, Grünbaum’s
inequality etc. Simultaneously, a lot of results can be generalized, and many questions remain open.
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Ongoing discussions with different specialists also made me curious about problems at the intersection
of statistics and probability theory which is a fascinating and quite applicable area with numerous con-
nections to data science and convex geometry. In particular, it is rich with tests related to comparison of
data sets. Among those, computationally free or low-cost tests are the most beneficial. Not surprisingly,
this has a direct connection to concentration inequalities ([BL]) and Kahane-Khintchine-type inequalities
([Ka]).

In what follows, I introduce necessary notions, open problems that have been considered, and state the
results, as well as discuss ongoing projects and future plans.

2. Nakajima-Süss conjecture and its functional generalization

The beautiful world of geometric tomography flourishes with numerous problems on retrieval of infor-
mation about sets from their projections, sections, or both. For example, in terms of data science, both
of those procedures can be thought of as a restriction of data under certain conditions, i.e. irrelevance
criteria or information reduction procedure (see [JL]). Hence, it is quite interesting to wonder how the
restricted information can uniquely characterize the full data set. Examples of such conditions are vol-
ume estimates, rigidity of the structure or symmetry conditions. In this regard, see also synchronization
problems and questions of alignment ([Ban]).

One of the curious applications of the above tasks is the orientation estimation problem which is of
paramount importance and that appears in a Cryo-EM imaging process: a molecule is imaged after being
frozen at a random (unknown) rotation and a tomographic 2-dimensional projection is captured. Given
a number of tomographic projections taken at unknown rotations, we are interested in determining such
rotations with the objective of reconstructing the molecule density.

From the point of view of convex geometry, this type of problems deals with convex bodies – compact
sets K in a d-dimensional Euclidean space Ed with non-empty interior such that, for any two points
x, y ∈ K the interval connecting them, tx + (1 − t)y, t ∈ [0, 1], belongs to K as well. Denote by Bd

2 the
unit Euclidean ball in Ed, and by Sd−1 the unit sphere. For any convex body K ⊂ Ed and a subspace
H ⊂ Ed of dimension k, we can consider the orthogonal projection K|H of K onto H. The following
long-standing problem (cf., for example, [Ga, Problem 3.2, p. 125 and Problem 7.3, p. 289]) has inspired
many related questions in my research.

Figure 1. Projections coincide up to a congruency.
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Problem 1. Let 2 ≤ k ≤ d− 1. Assume that K and L are convex bodies in Ed such that the projections
K|H and L|H are congruent for all subspaces H ⊂ Ed,dimH = k. Is K a translate of ±L?

Here we say that two sets A,B ⊂ Ek are congruent (isometric) if there exists an orthogonal transfor-
mation ϕ ∈ O(k,H) in H such that ϕ(A) is a translate of B.

A similar question can be asked about the sections of a convex body, namely

Problem 2. Let 2 ≤ k ≤ d− 1. Assume K and L are star bodies in Ed such that the sections K ∩H and
L ∩H are congruent for all subspaces H ⊂ Ed, dimH = k. Is K = ±L?

The first affirmative result for projections in the case of the trivial orthogonal transformations goes
back to 1932 and belongs to S. Nakajima and W. Süss ([R3]). The first result for projections in the case of
non-trivial orthogonal transformations was obtained by V. Golubyatnikov in the case k = 2 (he considered
the case of directly congruent projections under an additional restriction on a lack of symmetries in the
projections ([Go]). Some partial results were also proved by D. Ryabogin, M. Alfonseca, M. Cordier ([R2],
[ACR]).

In our work with my PhD advisor we answered both questions in the class of convex polytopes. This
was the first result where the case of opposite congruency was considered, i.e. orthogonal transformations
including reflections.

Theorem 2.1 ([MR]). Let 2 ≤ k ≤ d− 1 and let P and Q be two convex polytopes in Ed such that their
projections P |H, Q|H, onto every k-dimensional subspace H, are congruent. Then there exists b ∈ Ed
such that P = Q+ b or P = −Q+ b.

Theorem 2.2 ([MR]). Let 2 ≤ k ≤ d− 1 and let P and Q be two convex polytopes in Ed containing the
origin in their interior. Assume that their sections, P ∩H, Q ∩H, by every k-dimensional subspace H,
are congruent. Then P = Q or P = −Q.

Figure 2. A classical hedgehog in E3 and a few of its projections.

According to the recent counterexamples in [Zh], one should suspect that convex bodies in the above
problems must be congruent by more than a reflection. Although, almost nothing is known in the case
when the convexity condition is dispensed with. In this regard, I extended the results of V. Golubyatnikov
(see [Go]) to its functional counterparts. On the one hand, it is known that a support function hK of a
convex body K,

hK(ξ) = max
x∈K

x · ξ is continuous for all ξ ∈ Sd−1.
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On the other hand, considering any twice-continuously differentiable function f on Sd−1, and treating
it as a support function of a set (by considering the envelope of the hyperplanes with the equation
x · u = f(u)), we obtain the notion of a classical hedgehog Hf ([MM]).

These objects appear in differential geometry and can be highly non-convex. Following the ideas of
V. Golubyatnikov and using the methods of harmonic analysis and algebraic topology, I have obtained
the following functional generalization.

Theorem 2.3 ([M]). Consider two classical hedgehogs Hf and Hg in Ed, d ≥ 3. Assume that their
projections on any two-dimensional plane passing through the origin are directly congruent and have no
direct rigid motion symmetries, then Hg = Hf + b or Hg = −Hf + b for some b ∈ Ed.

Quite often (for instance, see Section 5) problems of convex geometry can be re-stated in the analytic
language of functions, which yields many fruitful generalizations and simplifies known techniques.

3. Visual recognition of convex bodies

Another approach to understanding the structures of convex bodies works with point projections and
visual cones, which is exactly the way an observer “sees” an object, i.e. a data about a convex body is
obtained. For example, this set of problems has a lot in common with computer vision tasks, [HZ].

The first result in this regard is a partial answer to the question posed by Kurusa ([KK]) regarding
visually recognizing shapes of convex bodies from their shadows.

Problem 3. If K and L are two convex bodies inside the sphere rSd−1, and for each point z ∈ rSd−1 the
visual cones of C(z,K) and C(z, L) are congruent (the bodies look alike), then is it true that K = L?

It was shown to be correct in the class of Euclidean balls ([Ma]). Besides, it was proved that if one of
the bodies is an ellipsoid then so is the other one ([BG]). Also see [KO] for related discussions. I managed
to provide the affirmative answer to the above problem for polyhedra, namely

Theorem 3.1 ([M1]). Let d ≥ 3, r > 0 and let P,Q be two convex polytopes contained in the interior of
a ball rBd

2. Assume that for any point z on the sphere rSd−1 = ∂(rBd
2), the support cones C(z, P ) and

C(z,Q) of the polytopes are congruent. Then P = Q.

The proof of the above result suggests that the notion of spherical projections Kz and Lz that I
introduced can be a useful technique. Interestingly enough, the following result holds (note that it is not
equivalent to Theorem 3.1).
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Theorem 3.2 ([M1]). Let d ≥ 3, r > 0 and let P,Q be two convex polytopes contained in the interior of
a ball rBd

2. Assume that for any point z on the sphere rSd−1 = ∂(rBd
2), the spherical projections Pz and

Qz of the polytopes are congruent. Then P = Q.

Another most recent result of mine concerns two characterizations of polytopes in terms of non-central
sections as well as point projections. Curiously enough, they imply their known counterparts for orthog-
onal projections and central sections ([Kl], [Z]).

Theorem 3.3 ([M2]). Let K be a convex body in Ed, d ≥ 3, and {Hα}α∈A be a set of k-dim planes,
2 ≤ k ≤ d− 1, all of which intersect the interior of K, such that:

• for any supporting line l of K, there exists a plane Hα ⊃ l;
• for all α ∈ A, the intersection K ∩Hα is a k-dim polytope.

Then K is a polytope.

Figure 3. A (d− 1)-dim section (left) and a d-dim visual cone (right) for a convex body K.

For instance, if δ is a continuous function on Sd−1, then set of hyperplanes
{
Hξ

}
ξ
,

Hξ =
{
x ∈ Ed : x · ξ = δ(ξ)

}
, ξ ∈ Sd−1,

satisfies the conditions of the theorem ([BG]). In particular, for δ ≡ 0, Theorem 3.3 implies the celebrated
result of Victor Klee from 1959

Theorem 3.4 ([Kl]). A bounded convex subset of Ed is a polytope if any of its k-dim central sections,
2 ≤ k ≤ d− 1, is a polytope.

The version of Theorem 3.3 for ellipsoids was handled in [BG]. It also implies the corresponding result
for Euclidean balls. Note that such settings are considered in several problems of Convex Geometry, such as
questions related to characterizations of balls by sections and caps ([KO]), conical sections ([RY]), floating
bodies ([Bl2], [BSW]), illumination bodies ([Sc], [W]), t-sections ([Y], [YZ]), and convex billiards ([G]).

Additionally, I proved the following dual result

Theorem 3.5 ([M2]). Let K be a convex body in Ed, d ≥ 3, and {zβ}β∈B ⊂ Ed be a set of exterior points
of K that satisfies:

• for any supporting line l of K, there exists a point zβ ∈ l;
• for a fixed k, 3 ≤ k ≤ d, and all β ∈ B, any k-dim visual cone Ck(zβ,K) is polyhedral.

Then K is a polytope.
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For example, a closed surface S containing K in its interior satisfies the conditions of the point-set in
Theorem 3.5. Also, when S is a convex surface, the analogous problem for circular cones was solved in
[Ma]. In the class of elliptical cones, where {zβ}β∈B is a closed set, the corresponding result was obtained
for ellipsoids in [BG].

Lastly, by polar duality, Theorem 3.3 allows one to extend Theorem 3.5 to the case of infinitely distant
points. This yields Klee’s Theorem for orthogonal projections

Theorem 3.6 ([Kl]). A bounded convex subset of Ed is a polytope if any of its k-dim orthogonal projec-
tions, 2 ≤ k ≤ d− 1, is a polytope.

4. Intrinsic volumes of ellipsoids and the moment problem

The study of behavior of volume of a convex body under the Minkowski (vector) addition is the main
focus of the Brunn-Minkowski theory. For a convex body K in Ed, the classical Steiner formula asserts
that for every ε > 0,

vol(K + εBd
2) =

d∑
i=0

κn−iVi(K)εd−i,

where vol is the Lebesgue measure on Ed, the addition + is the Minkowski addition, and κd−i is the volume

of Bd−i
2 . The coefficients Vi(K) are known as the intrinsic volumes of K. The geometric interpretation

of some of these quantities is the following: Vd(K) is the volume of K, Vd−1(K) is (a multiple of) the
surface area, V1(K) is (a multiple of) the mean width. A thorough discussion of intrinsic volumes can be
found in [S].

In 2017, Gusakova and Zaporozhets asked if an ellipsoid is uniquely determined (up to an isometry) by
a tuples of its intrinsic volumes. Namely, they conjectured the following

Conjecture 4.1. Let E1 and E2 be two ellipsoids in Ed such that V1(E1) = V1(E2), V2(E1) = V2(E2),...,
Vd(E1) = Vd(E2). Then E1 and E2 are congruent.

Petrov and Tarasov ([PT]) confirmed this conjecture in E3. For higher dimensions, the problem remains
open.

My co-authors and I showed that a similar question for dual volumes has a positive answer in any
dimension. Dual volumes were introduced by Lutwak ([L]) within the framework of the dual Brunn-
Minkowski theory. In this theory the Minkowski addition of convex bodies is replaced by the radial
addition of star bodies. The dual version of the Steiner formula asserts that

vol(K +̃ εBd
2) =

d∑
i=0

(
d

i

)
Ṽi(K)εd−i,

where K is a star body in Ed and +̃ is the radial addition. The coefficients Ṽi(K) are called the dual

volumes. Note that Ṽd(K) is equal to the volume of K. Denoting by ρK the radial function of (a star
body) K,

ρK(ξ) = max{a ≥ 0 : aξ ∈ K}, ξ ∈ Sd−1,
one can write the dual volumes of K as follows:

(1) Ṽi(K) =
1

n

∫
Sd−1

ρiK(θ) dθ,

where the integration is with respect to the spherical Lebesgue measure.
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Note that while the intrinsic volumes are invariant under translations, the dual volumes depend on
the choice of the origin. Both the intrinsic volumes and dual volumes are invariant under orthogonal
transformations.

The main result is the following

Theorem 4.2 ([MTY]). Let E1 and E2 be two ellipsoids in Ed, d ≥ 2, centered at the origin such that

Ṽ1(E1) = Ṽ1(E2), Ṽ2(E1) = Ṽ2(E2),..., Ṽd(E1) = Ṽd(E2). Then E1 and E2 are congruent.

As one can see, the right-hand side of formula (1) makes sense for all real i. This allows to use (1) as
a definition of dual volumes of any order i. In view of this remark, in the statement of Theorem 4.2 the

collection of the dual volumes {Ṽi}di=1can be replaced by any d-tuple of the form {Ṽik}dk=1, where i1,..., id
are distinct non-zero real numbers from the interval (−2, d]. In some cases one can take numbers from a
larger interval.

In the proof of Theorem 4.2 we showed that the question is in fact related to a problem of moments
([A]). Using this idea we also gave an alternative proof of the result of Petrov and Tarasov for the intrinsic
volumes of ellipsoids in E3. Lastly, we managed to give partial affirmative answers to Conjecture 4.1 for
ellipsoids of revolution.

5. Questions of geometric inequalities

The celebrated result of Grünbaum ([Gr], [Mi]) gives a lower bound for the volume of that portion of a
convex body lying in a half space which slices the convex body through its centroid (center of mass). More
precisely, assume that the centroid of a convex body K is at the origin. Given a unit vector θ ∈ Sd−1, we
define a half-space θ+ := {x : 〈x, θ〉 ≥ 0}. Then Grünbaum’s inequality states that

vold(K ∩ θ+)

vold(K)
≥
(

d

d+ 1

)d
.(2)

There is equality when, for example, K is the cone

conv

(
−1

d+ 1
θ + Bd−1

2 ,
d

d+ 1
θ

)
,

and Bd−1
2 is the unit ball in θ⊥.

Figure 4. How small is K ∩ E ∩ θ+ compared to K ∩ E?



8

Fradelizi, Meyer, and Yaskin in [FMY] asked the following question: what is the largest constant
c = c(d, k) > 0, depending only on d and k, so that

volk(K ∩ E ∩ θ+)

volk(K ∩ E)
≥ c?(3)

They showed that there is an absolute constant c0 > 0 so that c ≥ c1 := c0
(d−k+1)2

(
k
d+1

)k−2
, but they

did not prove that it is optimal. Also, note that the value of c cannot be obtained from Grünbaum’s
inequality because the centroid of K ∩ E is in general different from the centroid of K.

The following result is a corollary of a more general statement regarding γ-concave functions that my
collaborators and I proved. A particular case for log-concave functions (γ = 0) was shown in [MNRY].

Theorem 5.1 ([MSZ]). Fix a k-dimensional subspace E of Ed, and θ ∈ E∩Sd−1. Let Ẽ be the (d−k+1)-
dimensional subspace spanned by θ and E⊥. Let K be a convex body in Ed with the center of mass at the
origin. Then

volk(K ∩ E ∩ θ+)

volk(K ∩ E)
≥
(

k

d+ 1

)k
.

There is equality if and only if

K = conv

(
−
(
d− k + 1

k

)
z +D0, z +D1

)
,

where

• z ∈ E with 〈z, θ〉 > 0;

• D0 is a (k − 1)-dimensional convex body in Ẽ⊥;
• D1 is an (d − k)-dimensional convex body in an (d − k)-dimensional subspace F ⊂ Ed for which
Ed = span(E,F ), and the centroid of D1 is at the origin.

Figure 5. In E3 for k = 1, an optimizer is the convex hull of two segments in a general position.

Observe that the above result generalizes the one of Grünbaum (when k = d), and also provides the
full characterization of the equality case.
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6. Analytic permutation testing

The permutation (randomization) test is a versatile type of exact non-parametric significance test that
requires drastically fewer assumptions than similar parametric tests, but achieves the same statistical
power. The main downfall of the permutation test is the high computational cost of running it making
such an approach laborious for complex data and experimental designs and completely infeasible in any
application requiring speedy results.

My co-authors and I proposed a rectification of this problem through an application of Kahane-
Khintchine-type inequalities under a weak dependence condition ([Sp]), and thus came up with a com-
putation free permutation test which is valid for finite samples. The general framework can be applied
to multivariate and functional data as well as the corresponding covariance matrices and operators re-
sulting from theorems in commutative and non-commutative Banach spaces. We also showed that such
an approach can be extended from two-sample to N -sample testing. This generalizes the approach for
Rademacher sums to Rademacher chaoses ([V]).

Figure 6. A comparison of univariate two sample tests for normal data with balanced
sample sizes m1 = m2 = 100 (κ = 1), and for imbalanced m1 = 140;m2 = 60 (κ = 21

3).

In particular, let n = m1 +m2, and X1, . . . , Xn ∈ R be independent random variables such that their
mean EXi = µ1 for i ≤ m1, and EXi = µ2 for i ≥ m1 + 1. We wish to test the hypothesis H0 : µ1 = µ2
versus H1 : µ1 6= µ2. For this, we treat X1, . . . , Xn ∈ R as fixed and consider π ∈ Sn a random permutation
uniformly distributed on the symmetric group of n elements. Then we consider the randomly permuted
test statistic

T (π) =
1

s

[
1

m1

m1∑
i=1

Xπ(i) −
1

m2

n∑
i=m1+1

Xπ(i)

]
,

which is normalized by the sample standard deviation s of the entire set X1, . . . , Xn. Let T0 be the
test statistic T (π) for the original ordering (data set). Then, the p-value for the above hypothesis test
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is P (T (π) ≥ T0), which is often approximated by randomly generating N � n! random permutations
from Sn. To avoid the simulation-based approximation, we instead prove a sub-Gaussian concentration
inequality on the p-value

Theorem 6.1 ([KMS]). Let m1 = κm2 for some κ ≥ 1, then

P(T (π) ≥ t) ≤ exp

(
− nt2

2[κ+ 1]3

)
.

We also provided extensions of our tail bound to commutative and non-commutative Banach spaces,
and presented refined bounds using regularized incomplete beta function and Talagrand’s concentration
inequality ([T]). Lastly, as mentioned earlier, the generalization for N -sample testing, N ≥ 3, was also
shown.

To conclude, we successfully tested this methodology on classic functional data sets including the Berke-
ley growth curves and the phoneme dataset, and compared the outcomes with known approaches. We also
considered hypothesis testing on speech samples, functional and operator data, under two experimental
designs: the Latin square and the complete randomized block design.

7. Current work and future plans

I continue my investigations in the area of Convex Geometry and related to it topics of Harmonic
Analysis and Probability Theory. Despite the fact that convexity is a very old topic that could be traced
at least to Archimedes, it still offers a long list of very interesting open problems that are often accessible
even to undergraduate students.

I am especially interested in the questions that lie at the intersection of Geometric Tomography and
Computer Vision: unique determination of convex bodies under certain conditions on their different types
of sections, projections, shadows or other quantitative characteristics that appear in Brunn–Minkowski
theory. For example, questions involving brightness or width functions often are dealt with in pure
differential geometry settings: investigation of solutions for non-ordinary differential equations on principal
curvatures of a sufficiently smooth convex body (for example, see [HH]).

I am also trying my hands on some problems of characterization of convex bodies with sections and
projections satisfying symmetry conditions ([MSR], [R1]). The problem can be reformulated in terms of
functions on the sphere and various conditions on their restrictions to (large) sub-spheres.

As was partially discussed above, many curious questions deal with the visual characteristics of convex
bodies. In particular, it would be extremely interesting to show analogous results for the questions
involving visual measures instead of the shapes of supporting cones or their projections. The main
difficulty in working with such questions is a lack of convenient notions (such as support function or
radial functions) that work well for point projections. Nevertheless, different approaches are known. For
instance, some involve techniques of integral geometry ([KO]).

Among problems regarding point projections, there are many interesting questions regarding the struc-
ture of shadow boundaries of convex bodies, [Bl1]. For example, it is known that ellipsoids are the only
convex bodies in Ed that have flat shadow boundaries under orthogonal projections. It is very natural to
ask whether the same holds true for point projections in any dimension. For example, it is possible to
show that if a shadow boundary of a body is flat for point projections from sufficiently far away, then it
is an ellipsoid indeed. Other relative positions of point projections for visual recognition of convex bodies
with flat shadow boundary yield no known results.
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Except the questions above, there are still a lot of motivating open problems about beautiful properties
of convex bodies that hold true only for ellipsoids (check out Figure 7) For instance, K. Bezdek asks
whether a convex body with all sections having an axis of symmetry is an ellipsoid or a body of revolution.

In my opinion one of the most elegant problems of convexity is the Shephard problem ([Sh]): if
K and L are centrally symmetric convex bodies in Ed such that the volume of K|H is smaller than the
volume of L|H for any subspace H of a fixed dimension, does it follow that the volume of K is smaller than
that of L? It would be quite fascinating to investigate an analogous question for spherical projections.
The case of equality for the volumes of the spherical projections from any point on the sphere (which
corresponds to Aleksandrov theorem for orthogonal projections, see [Ga]) is of particular interest, as,
possibly, a new approach to the questions of uniqueness.

It is worth noting here that particular cases of these and many other related questions can serve as
fruitful undergraduate projects as well. This proved to be productive during Access and Support for
Successful Undergraduate Research Experiences program in Summer 2017 at Kent State University, when
my colleague and I worked on “baby versions” of convex geometry problems with the participants.

Since my Ph.D. studies, I have been interested in applications of harmonic analysis to the problems of
convex geometry. I have been trying to attack an open question related to Busemann-Petty problem
which is a “dual” counterpart of the Shephard problem. It asks whether for two centrally symmetric
convex bodies K and L in Ed, such that the volume of section K∩H is smaller than the volume of section
L∩H for any subspace H of a fixed dimension, it follows that the volume of K is smaller than the volume
of L (see [Ko])? The question about sections of dimension 2 and 3 remains open for n ≥ 5.

There are many ways to generalize the result of Grünbaum ([Gr]) mentioned above. My collaborators
and I have had some fruitful discussions for some particular cases. For instance, instead of considering
the center of mass of a whole convex body, it could be interesting to ask the same question for the center
of mass of its surface. Other intrinsic volumes are of an interest as well. A standard technique to
tackle this problem deals with rearrangements (in particular, symmetrizations) that preserve the quantity
of interest (volume, area etc.), and allow one to investigate the behaviour of centroids. This may be far
from an easy task, especially for convex sets in non-Euclidean settings. A different way suggests that an
appropriate embedding of sets in Euclidea space and investigating push-forward measures can be quite
useful ([BHPS]).

Figure 7. Is an ellipsoid the only convex body that looks centrally symmetric from any position?
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Since the beginning of my postdoc, I have also been studying different aspects of probability and their
relations to convex geometry and data science ([V]). In particular, one of my collaborators and I have
worked on generalizing Khinchine’s inequality ([MS]) for dependent random variables. At this point,
except the fore-mentioned concentration inequalities and their statistical applications, we have partial
results for particular types of dependencies.

It also seems very likely that the probability approach can be useful in the proof of the inverse Brunn’s
theorem for non-convex bodies, which has been one of my recent projects as well. It is known that ([Ba]),
volume of cross-sections in a fixed direction of a d-dimensional convex body is a 1

d−1 -concave function on
its support. According to numerical approximations, my colleague and I showed that the inverse of this
statement does not hold. However, analytical justification remains unclear. For this reason, we consider
a probabilistic approach: creating a probability space of the set of our potential counterexamples and
investigating measures of different outcomes.

My last (and definitely not least) current ongoing project deals with interesting problems regarding
delocalization of random vectors. My collaborators and I have been working on a problem related
to random hyperplanes and eigenvectors of random matrices ([RV]). Namely, we are investigating the
behaviour of the pth-norm of a unit vector which is orthogonal to a random hyperplane spanned by vertices
of a unit cube. Our main goal is to prove a concentration inequality for the norm. For this purpose, one of
the powerful tools that we use is the mass transport ([Vi]) between two particular distributions on the unit
sphere. Except being very curious pure math problems, questions of delocalization found fundamental
applications in compressive sensing ([NV]).
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